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The effect of a uniform and parallel magnetic field upon the stability of a free 
shear layer of an electrically conducting fluid is investigated. The equations of the 
velocity and the magnetic disturbances are solved numerically and it is shown 
that the flow is stabilized with increasing magnetic field. When the magnetic 
field is expressed in terms of the parameter N ( = M2/R2) ,  where M is the Hart- 
mannnumber and R is the Reynolds number, the lowest critical Reynoldsnumber 
is caused by the two-dimensional disturbances. So long as 0 < N < 0-0092 the 
flow is unstable at all R. For 0.0092 c N < 0.0233 the flow is unstable at 
0 < R c R,, where R, decreases as N increases. For 0.0233 < N < 0.0295 
the flow is unstable at  R, < R < R,, where R,, increases with N .  Lastly for 
N > 0.0295 the flow is stable a t  all R. When the magnetic field is measured by 
M ,  the lowest critical Reynolds number is still due to the two-dimensional 
disturbances provided 0 < M < 0.52, and R, is given by the corresponding R,. 
For 2M > 0.52, R, is expressed as R, = 54M, and the responsible disturbance is 
the three-dimensional one which propagates at angle cos-l(0.52/M) to the direc- 
tion of the basic flow. 

~~~ 

1. Introduction 
It is well known that the magnetic field imposed upon laminar flows of elec- 

trically conducting fluid has a tendency to stabilize the flows. This tendency has 
in fact been confirmed for flows such as channel flow (Stuart 1954; Hains 1965) and 
boundary-layer flow (Abas 1968) when the magnetic field is uniform and parallel 
to the flow and the magnetic Reynolds number is small. In  these cases the critical 
Reynolds number, which is already quite large without the magnetic field, is 
increased with increasing intensity of the magnetic field. On the other hand, the 
situation is not as clear in unbounded flows such as jet, wake, and free shear 
layer flows between two parallel streams. Without a magnetic field these flows are 
much more unstable compared with bounded flows, and above all the free shear 
layer is unstable at all Reynolds numbers. Thus if the stabilizing effect of the 
magnetic field is also to exist for unbounded flows, it should change drastically 
the stability characteristics of the flows. So far, however, no decisive result seems 
to have been obtained for this problem. 

The stability of a free shear layer in the presence of auniform and parallel mag- 
netic field has so far been dealt with only for the cases of infinitesimal Reynolds 
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numbers (Abas 1969) and very large Reynolds numbers (Gotoh & Numata 
1969). With these investigations, however, the central problem of how the critical 
Reynolds number is changed with the magnetic field has not been solved and the 
matter has been left for conjecture (Abas 1969). I n  the present paper we shall deal 
with the same problem using a numerical method and thus the stability charac- 
teristics will be examined for all values of the Reynolds number R. As a result 
it  will be shown that the flow is in fact stabilized by the magnetic field. 

2. Formulation of the problem 
Denote the velocity of a plane parallel flow by (U(y), 0,O) and the uniform 

parallel magnetic field by (If, 0,  0 ) ,  where the z axis of the Cartesian co-ordinates 
(2, y, x )  is taken along the direction of the steady flow. The instability of this 
hydromagnetic flow due to infinitesimal disturbances is investigated. In  view of 
the independence of the basic fields on z,z and time t ,  we may decompose the 
disturbance of the velocity u’ and that of the magnetic field h’ into normal modes: 

where a( > 0 )  and p (real) denote the wave-number in the 2 and z directions, and 
c (=  c,+ic,) the complex phase velocity of the disturbance. According as ci 
takes positive, zero or negative values, the disturbance is amplified, neutral 
or damped, respectively. 

When the equations for disturbances c1 and h are made non-dimensional there 
appear the following parameters: 

R = LUJv, Reynolds number: 

R,, = 4ncrpU,L, magnetic Reynolds number; 

M = (a/vp)&pLIf, Hartmann number; 

where U, and L are the representative velocity and length, and v, cr, p and p de- 
note the kinematic viscosity, the electric conductivity, the magnetic permeability 
and the density of the fluid, respectively. If we consider flows of a fixed kind of 
fluid, R, ( = 4ncrvpR) is not independent ,Of R. 

The boundary-value problem for fi and h leads to a relationship between eigen- 
values of C, a, p, R and M ,  from which we can determine c as a function of the rest. 
It may easily be seen that these parameters appear in the relation only in the 
form, K = (a2+P2)4, aR and N = M2/R2,  where N is another parameter repre- 
senting the magnetic field.? Thus ifwe take R and N as independent parameters, 
ci may be expressed as 

ci = F(K, aR, N ) ,  

where F is a function to be determined by the eigenvalue relation, For the neutral 
disturbances we have F(K, aR, N )  = 0, 

or alternatively, aR = G(K,N). (2.1) 

t N is equivalent to Q/R used by Abas (1969) and N / R  used by Gotoh & Numata (1969). 
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It may easily be shown from (2.1) that Squire's theorem concerning the critical 
Reynolds number of the non-magnetic flows is equally valid in this case. Let us 
denote the critical Reynolds number for three-dimensional disturbances 
(P/a = non-zero constant) by {Rc(N)}3 and the two-dimensional one (/3 = 0 )  by 
{12c(N))2. Then from (2.1) we have 

= @/a) {RC(N12 ' {RC(3)12, (2.2) 

where {12c(N)}2 = min [( l/a) G(a, N ) ]  by definition. Thus the two-dimensional dis- 

turbance gives the lowest critical Reynolds number when N is fixed. 
In  practice, however, the magnetic field and the flow velocity are controlled 

separately, and therefore a more natural choice of independent parameters may 
be R and M rather than R and N .  The inequality (2.2) does not apply for fixed M ,  
but the above argument is easily modified to cover this case. Equation (2.1) may 
be rewritten as 

If we denote the critical Reynolds number for fixed M by Rc(M) and proceed 
similarly to the above, we have 

a>O 

aR = G(K,uM).  (2.3) 

P c ( J f ) } 3  = ( K b )  {Rc(aM/K)),- (2-4) 

Thus, although Squire's theorem does not necessarily hold for fixed M we can 
easily calculate the critical Reynolds number for three-dimensional disturbances 
from the two-dimensional one through (2.4) provided the latter is known for all 
values of M .  The same result has already been obtained by Hunt (1966) for the 
case of small magnetic Reynolds numbers. 

In  the following we shall first investigate the stability of a free shear layer of the 
velocity profile U(y) = tanh y against two-dimensional disturbances and later 
deal with three-dimensional disturbances. If we consider conventional electri- 
cally conducting fluids such as mercury, R,/R is of order of and hence we 
can safely assume that R, 4 1 while R is arbitrary so long as these fluids are con- 
cerned. The equations governing two-dimensional disturbances are reduced, when 
R, is small, to  the following single equation 

( 0 2 -  a")"# - iaR[( u- c) ( 0 2 -  a2) -02U+iaRN] q5 = 0, (2.5) 

where D = d/dy,  q5( y )  = dv( y) / ia .  Since the disturbances should vanish at infinity, 
#( y )  must satisfy the boundary condition 

q5fCo) = #(-a) = 0. (2.6) 

The equation (2.5) together with the boundary condition (2.6) constitutes an 
eigenvalue problem for c, a, R and N .  

3. Eigenvalue problem 

which vanish at  y =co by 
Equation (2.5) permits four particular solutions. Let us denote two of them 

and q52. Then the solution of (2.5) and (2.6) may be 

expressed as q4 = C1#1+C242, (3.1) 
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where C's are complex constants to be determined so as to satisfy the condition 

Since we are interested only in neutral disturbances, we may put c = 0.t 
In  the case of an antisymmetric velocity profile the condition c = 0 requires 
that the solution of (2.5) and (2.6) has Hermitian symmetry with respect to y. 
So we can replace the condition q5( - 00) = 0 by the symmetry condition at  y = 0 : 

(3.2) 

$(--a) = 0. 

Dk#(0) = ( -  l)kDk$(0) (k = 0, 1,2, and 3), 

where 7 denotes the complex conjugate of q5. The conditions for all higher deri- 
vatives are then automatically satisfied through (3.2) and (2.5). Substituting 
(3.1) into (3.2), we have the following condition for all C's not to vanish 

- - 
q5lP) q5m MY $ 2 W  

f)$l(O) - m ( 0 )  W d O )  - m o )  
D2q5l(0) O271(O) 0 2 # 2 ( o )  m2(0) 

03$l(o) - D3g1(0) o35%(0) - o3iJ2(0) 

= 0. (3.3) 

For numerical integration it is convenient to transform (2.5) into a set of first- 
order equations. For this purpose we transform the independent variable into 

z = U(y) = tanhy, (3.4) 

fj,=(-hj)-"(1+i)Dnq5r/q5j (j= 1,2;12= 1,2,3) ,  (3.5) 

and introduce dependent variables 

where A2 1 , 2 - a  - 2 +giaR[1+(1+4N)*],  Re[h,,,] > 0, 

have been introduced in order to keep the magnitude of fin at z = 1 within the 
order of unity. Then, (2.5) may be expressed as 

where use has been made of the fact that U = tanh y and that c = 0. The bound- 
ary conditions for f .  are obtained by substitution of the asymptotic forms of 
$j(j = 1,2)  for y & 1 into (3.5) and (3.6) as follows: at z = 1, 

". 

fj, = 1 +i, (3.7) 

f In general the neutrality of disturbance requires simply that ci = 0, but here we take 
the condition c = 0 as usually done. If  we assume the uniqueness of solution of (2.5) and 
(2.6) for antisymmetric velocity profiles, then c = 0 follows exactly as in non-magnetic case 
(see Tatsumi & Gotoh 1960). 
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dfi l  - iaR(1 +i) (h;-a2-4) -- dz 2Ai(l+Aj)[2(2+2h5+h~-aZ)-iaR]'~ 

The eigenvalue relation (3.3) may be rewritten in terms of fin as follows: 

1 -1 1 -1 

= 0, Fll E;l 4 1  3 2 1  

&2 4 2  F22 - 3 2 2  

E(a, R, N )  = 

F13 F13 F23 ' 2 3  

where = ( -hj)"fjn(O)/C(1 +i)lhlhz('nI, 

25 

(3.9) 

the factor lhlh21!zn being introduced to improve accuracy of numerical calcula- 
tion. Equation (3.9) is the eigenvalue equation which determines the relationship 
between a, R and N for the neutral disturbance. 

4. Results and discussions 
4.1. Two-dimensional disturbances 

As noted in $2, the two-dimensional disturbances give the lowest critical Rey- 
nolds number when N is fixed. Thus we shall first work out the curves of neutral 
stability against two-dimensional disturbances for various constant values of N .  
We solve the eigenvalue equation (3.9) numerically using an iteration method as 
described below. 

In  the first step, take a trial value, a, say, of a for agivenpair of R andN, and in- 
tegrate (3.6) numerically starting from the point x = 1 and find fj,(0). Substitution 
offi,(0) into the determinant of (3.9) gives E(a,, R, N ) ,  which will be denoted:as 
E(a,) for brevity. In  general E(a,) $: 0 and then we calculate E(a, + Aao) for a 
certain increment Aa,. Now thereare threepossibilities. (i)If E(a,)E(a, + Aa,) > 0 
and 1 E(a, + ha,) 1 > (E(a,) 1, calculate E(a, + JcAa,) for k = 2,3, . . . until we first 
obtain E(a, -t- nAa,) E(a, + (n + 1)  Aa,) < 0 for a certain n. Put a, + nAa, = a,. 
(ii) If E(a,)E(a,+Acc,) > 0 and lE(a,+Aa,)l < \E(a,)I, calculate E(a,-kAa,) 
for k = 1,2, ... until we first have E(a,-nAa,) E(a,- (n+ 1) ha,) < 0 for a 
certain n. Put a, - nAa, = a,. (iii) I f  E(a,) E(a, + Aa,) < 0, put a, = al. Thus we 
obtain the first approximation IE(al)l, which must be much smaller than IE(a,)J. 

In  the second step, take a1 and Aa, = lO-lAa, as the trial a and its increment 
respectively and proceed as before until we find an a2 satisfying the respective 
inequalities in (i), (ii) and (iii). Thus we find the second approximation ]E(a2)] .  
Proceeding similarly to the third and further steps we obtain (E(a,)( < 10-3, 
and take an as the eigenvalue of a for the given pair of R and N .  The eigenvalues 
of a for different values of R and N are calculated in the same manner, and we 
obtain the numerical results as tabulated in table 1. 
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FIGURE 1. Distribution of the neutral curves of two-dimensional disturbances 
for various values of N. 

N = O  N = 0.005 

R 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
7.0 
9.0 

10.0 
15.0 
20.0 
25.0 
30.0 

U 

0.0734 
0.1470 
0.2731 
0.3671 
0.4380 
0.4933 
0.5743 
0.6315 
0-6543 
0.7346 
0.7834 
0.8167 
0.8409 

R 

5.0 
10.0 
15.0 
20.0 
25.0 
30.0 
40.0 
50.0 
60.0 
70.0 
80.0 
90.0 

100.0 
150.0 
200.0 

a 
0.4648 
0.6031 
0.6609 
0.6873 
0.6978 
0.6990 
0.6851 
0.6584 
0.6242 
0.5852 
0.5435 
0.5000 
0.4565 
0.2842 
0.1952 
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N = 0.01 N = 0.02 
h A 

f 7 I 1 

a a 
A - f 1 

R Upper branch Lower branch R Upper branch Lower branch 
0-5 0-0632 - 0.5 0-0485 - 
1 .o 0.1285 - 1.0 0.1030 - 
2.0 0.2426 - 2.0 0.2027 - 
3.0 0.3265 -. 3.0 0,2745 0-0683 
4.0 0.3876 - 4.0 0.3234 0.0808 
5.0 0.4333 - 5.0 0.3563 0.0913 
7.0 0.4953 - 7.0 0.3911 0.1090 
9.0 0.5330 - 9.0 0.3990 0.1248 

10.0 0.5461 - 10.0 0.3956 0.1327 
15.0 0.5769 - 15.0 0.3150 0.1890 
20.0 0.5748 - 16.0 0.2716 0.2207 
30.0 0.5243 0.06693 17.0 No solution 
40.0 0.4423 0.06556 
50.0 0.3481 0.06341 Tv’ = 0.025 

0-05918 70.0 - r \ A 

80.0 0.1475 - 
100.0 - 0.05678 
105.0 0.0793 0.05784 
110.0 0.0653 0.06360 
115.0 No solution 

N = 0.0275 

a 
A 

f \ 

R Upper branch Lower branch 
3.0 0.2113 - 
4.0 0.2450 0.1442 
5.0 0.2565 0.1697 

N = 0-028 
r A 

7 - 

---7 

R Upper branch Lower branch 

3.0 0.2038 0.1283 
4.0 0.2355 0-1524 
5.0 0.2415 0.1832 

R 
0.5 
0.8 
1.0 
1.5 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
8.4 
8.6 
8-8 
9.0 

a 
-_--_7 

Upper branch Lower branch 

No solution 
0.0566 0.0565 
0.0791 0.0524 
0.1298 0.0659 
0.1734 0.0779 
0.2379 0.0983 
0.2784 0.1159 
0-3012 0.1324 
0.3104 0-1492 
0.3084 0.1680 
0.2928 0.1925 
0.2802 0.2068 
0.2709 0.2168 

0,2342 0.2355 
No solution 

TABLE 1. Wave-numbers of the neutral disturbance for various values of 
N and R 

The neutral curves in the (a, R) plane are depicted in figure 1 (a), and their 
behaviour for small values of R is shown in figure 1 (b).  It may easily be seen from 
these figures that the unstable region of the fa, R) plane decreases monotonically 
with increasing N .  There are four stages of the neutral curves for different N .  

(i) For 0 < N < 0.0092 the neutral curves extend from R = 0 to R = co, so 
that the flow remains unstable at  all Reynolds numbers. For extremely smalI 
values of a and R the behaviour of the neutral curves is in accordance with 
that derived from the values of R/a given by Abas (1969). 
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u = o  

N 

0.003 
0.004 
0.005 
0.007 
0.008 
0.0085 
0.0090 
0.0095 

uR uR 
- 1.878 
- 2.127 

33.49 2.416 
18.68 3-240 
13-68 3.945 
11.36 4.608 

8.739 5.579 
No solution 

TABLE 2. Eigenvalues of UR in the limit: u + 0 

In  order to obtain the eigenvalue relation for very large values of R and small 
a, we put a = 0 and search the eigenvalue of aR for various constant values of N .  
The result is tabulated in table 2. The relation between aR and N is as shown 
in figure 2, which gives two values of aR for a given N ,  or in other words, two 

1 I I I 
0 20 40 60 

uR 

FIGURE 2. Eigenvalue of uR in the limit: u -+ 0. 

asymptotic branches of the neutral curves of the form Roc u-l. For large values 
of aR the upper branch is well approximated by the formula 

1 
N = 4aR ( 1 - g )  2 

which was given by Gotoh & Numata (1969). Figure 2 shows that two branches 
coalesce to  one at N = 0-0092, Nl say, so that there exists no asymptotic branch 
of this kind for N > Ifl. 

(ii) For Nl < N < 0.0233 the neutral curve describes a loop on the higher 
Reynolds number side, and therefore the flow is unstable in the range 0 < R < R,,, 
where R, may be called the upper critical Reynolds number. R, decreases 
monotonically fram infinity at N = Nl with increasing N .  Two asymptotic 
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branches of the neutral curve at very small R approach to each other as N 
increases and eventually coalesce at N = 0.0233, = N ,  say. Abas (1969) eonjec- 
tured that N > N, would correspond to the state of complete stability, but as will 
be shown below the neutral curve still exists for N > N,. 

(iii) Por N, < N < 0.0295 the neutral curve describes a closed contour, and 
hence the flow is unstable in the range Rlc < R < R,, where Rk may be called the 
lower critical Reynolds number. Rlc increases monotonically from zero at N = N2 
with increasing N .  The change of the critical Reynolds number R,, including both 
Rlc and R,,, with N is shown graphically in figure 3 which has been produced from 

0 0.2 0.4 

N U 

FIGURE 3. Critical Reynolds numbers for 
two-dimensional disturbances when N 
is fixed as a magnetic parameter. 

FIUTJRE 4. Distribution of. LV at various 
values of R. N takes its maximum 
value 0.0295 on the curve of R = 3.0. 

data in figures 1 (a )  and (b). At the value of N = 0.0295, = N3 say, R, and R, 
become identical, that is the neutral curve vanishes.? Figure 4 shows that the 
neutral curve vanishes at the point R = 3.0 and u = 0.16. 

(iv) For N > N3 there is no neutral curve, and the flow is stable at all Reynolds 
numbers. Thus the minimum value of N which gives complete stability does not 
correspond to N2 = 0-0233 as conjectured by Abas but to N3 = 0.0295. 

4.2. Three-dimensional disturbances 
As mentioned in 3 2, when we take the Hartmann number Mas a magnetic para- 
meter in place of N ,  two-dimensional disturbances do not necessarily give the 
lowest critical Reynolds number. We can, however, easily calculate the critical 

t It can be proved that there is an upper bound of N for the amplified disturbance to 
exist (Gotoh 1971). 
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Reynolds number due to three-dimensional disturbances from the two-dimen- 
sional one using the equation 

First we calculate {R,(M)}, from {R,(N)}z given in figure 3 through the relation 
N = M2/R2. The resulting {B,(M)}, is shown graphically in figure 5. 

It may be seen that the ratio {R,(M)},/M decreases as M increases in the range 
0 < M < 0.52 = Nt{R,,(N3)}2, while it increases with M for M > 0.52. Hence, 
for0 < M < 0.52, 

20 

R, 10 

0 2 

M 

FIGURE 5 .  Critical Reynolds numbers for two-dimensional disturbances 
when M is fixed as a magnetic parameter. 

Thus the lowest critical Reynolds number is due to the two-dimensional dis- 
turbance, or in other words, Squire’s theorem is valid in the range 0 6 M < 0.52. 

For M > 0.52, on the other hand, the same argument leads t o  

min {R,(J!f)}, = min 
K l a  

M 
0.52 2 - {R,(0.52)}, 

= 5.8M. (4.3) 

Thus the lowest critical Reynolds number for all possible three-dimensional 
disturbances is given by (4.3), and the responsible disturbance is the one which 
propagates in the direction 8 = cos-1(0.52/M). 
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